Skip to contents

The transparent barrier model

This model considers an SPDE over a domain Ω\Omega which is partitioned into kk subdomains Ωd\Omega_d, d{1,,k}d\in\{1,\ldots,k\}, where d=1kΩd=Ω\cup_{d=1}^k\Omega_d=\Omega. A common marginal variance is assumed but the range can be particular to each Ωd\Omega_d, rdr_d.

From Bakka et al. (2019), the precision matrix is 𝐐=1σ2𝐑𝐂̃1𝐑 for 𝐑r=𝐂+18d=1krd2𝐆d,𝐂̃r=π2d=1krd2𝐂̃d \mathbf{Q} = \frac{1}{\sigma^2}\mathbf{R}\mathbf{\tilde{C}}^{-1}\mathbf{R} \textrm{ for } \mathbf{R}_r = \mathbf{C} + \frac{1}{8}\sum_{d=1}^kr_d^2\mathbf{G}_d , \;\;\; \mathbf{\tilde{C}}_r = \frac{\pi}{2}\sum_{d=1}^kr_d^2\mathbf{\tilde{C}}_d where σ2\sigma^2 is the marginal variance. The Finite Element Method - FEM matrices: 𝐂\mathbf{C}, defined as 𝐂i,j=ψi,ψj=Ωψi(𝐬)ψj(𝐬)𝐬, \mathbf{C}_{i,j} = \langle \psi_i, \psi_j \rangle = \int_\Omega \psi_i(\mathbf{s}) \psi_j(\mathbf{s}) \partial \mathbf{s}, computed over the whole domain, while 𝐆d\mathbf{G}_d and 𝐂̃d\mathbf{\tilde{C}}_d are defined as a pair of matrices for each subdomain (𝐆d)i,j=1Ωdψi,ψj=Ωdψi(𝐬)ψj(𝐬)𝐬 and (𝐂̃d)i,i=1Ωdψi,1=Ωdψi(𝐬)𝐬. (\mathbf{G}_d)_{i,j} = \langle 1_{\Omega_d} \nabla \psi_i, \nabla \psi_j \rangle = \int_{\Omega_d} \nabla \psi_i(\mathbf{s}) \nabla \psi_j(\mathbf{s}) \partial \mathbf{s}\; \textrm{ and }\; (\mathbf{\tilde{C}}_d)_{i,i} = \langle 1_{\Omega_d} \psi_i, 1 \rangle = \int_{\Omega_d} \psi_i(\mathbf{s}) \partial \mathbf{s} .

In the case when r=r1=r2==rkr = r_1 = r_2 = \ldots = r_k we have 𝐑r=𝐂+r28𝐆\mathbf{R}_r = \mathbf{C}+\frac{r^2}{8}\mathbf{G} and 𝐂̃r=πr22𝐂̃\mathbf{\tilde{C}}_r = \frac{\pi r^2}{2}\mathbf{\tilde{C}} giving 𝐐=2πσ2(1r2𝐂𝐂̃1𝐂+18𝐂𝐂̃1𝐆+18𝐆𝐂̃1𝐂+r264𝐆𝐂̃1𝐆) \mathbf{Q} = \frac{2}{\pi\sigma^2}( \frac{1}{r^2}\mathbf{C}\mathbf{\tilde{C}}^{-1}\mathbf{C} + \frac{1}{8}\mathbf{C}\mathbf{\tilde{C}}^{-1}\mathbf{G} + \frac{1}{8}\mathbf{G}\mathbf{\tilde{C}}^{-1}\mathbf{C} + \frac{r^2}{64}\mathbf{G}\mathbf{\tilde{C}}^{-1}\mathbf{G} ) which coincides with the stationary case in Lindgren and Rue (2015), when using 𝐂̃\tilde{\mathbf{C}} in place of 𝐂\mathbf{C}.

Implementation

In practice we define rdr_d as rd=pdrr_d = p_d r, for known p1,,pkp_1,\ldots,p_k constants. This gives 𝐂̃r=πr22d=1kpd2𝐂̃d=πr22𝐂̃p1,,pk and 18d=1krd2𝐆d=r28d=1kpd2𝐆̃d=r28𝐆̃p1,,pk \mathbf{\tilde{C}}_r = \frac{\pi r^2}{2}\sum_{d=1}^kp_d^2\mathbf{\tilde{C}}_d = \frac{\pi r^2}{2} \mathbf{\tilde{C}}_{p_1,\ldots,p_k} \textrm{ and } \frac{1}{8}\sum_{d=1}^kr_d^2\mathbf{G}_d = \frac{r^2}{8}\sum_{d=1}^kp_d^2\mathbf{\tilde{G}}_d = \frac{r^2}{8}\mathbf{\tilde{G}}_{p_1,\ldots,p_k} where 𝐂̃p1,,pk\mathbf{\tilde{C}}_{p_1,\ldots,p_k} and 𝐆̃p1,,pk\mathbf{\tilde{G}}_{p_1,\ldots,p_k} are pre-computed.

References

Bakka, H., J. Vanhatalo, J. Illian, D. Simpson, and H. Rue. 2019. “Non-Stationary Gaussian Models with Physical Barriers.” Spatial Statistics 29 (March): 268–88. https://doi.org/https://doi.org/10.1016/j.spasta.2019.01.002.
Lindgren, Finn, and Havard Rue. 2015. Bayesian Spatial Modelling with R-INLA.” Journal of Statistical Software 63 (19): 1–25.