This is a R package to implement certain spatial and spatio-temporal models, including some of the spatio-temporal models proposed in SORT vol. 48, no. 1, pp. 3-66. It uses the cgeneric
interface in the INLA package, to implement models by writing C
code to build the precision matrix compiling it so that INLA can use it internally.
We have implemented
some of the models presented in A diffusion-based spatio-temporal extension of Gaussian Matérn fields (2024). Finn Lindgren, Haakon Bakka, David Bolin, Elias Krainski and Håvard Rue. SORT vol. 48, no. 1, pp. 3-66. (https://raco.cat/index.php/SORT/article/view/428665)
the barrier (and transparent barriers) model proposed in https://doi.org/10.1016/j.spasta.2019.01.002
Vignettes
Please check here
Installation
The ‘INLA’ package is a suggested one, but you will need it for actually fitting a model. You can install it with
install.packages("INLA",repos=c(getOption("repos"),INLA="https://inla.r-inla-download.org/R/testing"), dep=TRUE)
You can install the current CRAN version of INLAspacetime:
install.packages("INLAspacetime")
You can install the latest version of INLAspacetime from GitHub with
## install.packages("remotes")
remotes::install_github("eliaskrainski/INLAspacetime", build_vignettes=TRUE)
A spacetime example
Simulate some fake data.
set.seed(1)
n <- 5
dataf <- data.frame(
s1 = runif(n, -1, 1),
s2 = runif(n, -1, 1),
time = runif(n, 1, 4),
y = rnorm(n, 0, 1))
str(dataf)
#> 'data.frame': 5 obs. of 4 variables:
#> $ s1 : num -0.469 -0.256 0.146 0.816 -0.597
#> $ s2 : num 0.797 0.889 0.322 0.258 -0.876
#> $ time: num 1.62 1.53 3.06 2.15 3.31
#> $ y : num -0.00577 2.40465 0.76359 -0.79901 -1.14766
Loading packages:
library(fmesher)
library(INLA)
library(INLAspacetime)
#> see more on https://eliaskrainski.github.io/INLAspacetime
Define spatial and temporal discretization meshes
smesh <- fm_mesh_2d(
loc = cbind(0,0),
max.edge = 5,
offset = 2)
tmesh <- fm_mesh_1d(
loc = 0:5)
Define the spacetime model object to be used
stmodel <- stModel.define(
smesh = smesh, ## spatial mesh
tmesh = tmesh, ## temporal mesh
model = '121', ## model, see the paper
control.priors = list(
prs = c(1, 0.1), ## P(spatial range < 1) = 0.1
prt = c(5, 0), ## temporal range fixed to 5
psigma = c(1, 0.1) ## P(sigma > 1) = 0.1
)
)
Fit the model
Define a projector matrix from the spatial and temporal meshes to the data
Aproj <- inla.spde.make.A(
mesh = smesh,
loc = cbind(dataf$s1, dataf$s2),
group = dataf$time,
group.mesh = tmesh
)
or, equivalently, with fmesher
methods for tensor product spaces:
Aproj <- fm_basis(
fm_tensor(list(space = smesh, time = tmesh)),
loc = list(
space = cbind(dataf$s1, dataf$s2),
time = dataf$time
)
)
Create a ‘fake’ column to be used as index. in the f()
term
dataf$st <- NA
Setting the likelihood precision (as fixed)
Combine a ‘fake’ index column with A.local
fmodel <- y ~ f(st, model = stmodel, A.local = Aproj)
Call the main INLA
function:
fit <- inla(
formula = fmodel,
data = dataf,
control.family = ctrl.lik)
Posterior marginal summaries for fixed effect and the model parameters that were not fixed.
fit$summary.fixed
#> mean sd 0.025quant 0.5quant 0.975quant mode
#> (Intercept) 0.6934075 4.032682 -6.962392 0.5227421 9.417461 0.5550903
#> kld
#> (Intercept) 7.405581e-05
fit$summary.hyperpar
#> mean sd 0.025quant 0.5quant 0.975quant mode
#> Theta1 for st 1.199208 0.4918283 0.3653922 1.161532 2.277316 0.9750207
#> Theta2 for st 1.435517 0.1710709 1.1031068 1.434032 1.776675 1.4277508
Using the inlabru
Setting the observation (likelihood) model object
data_model <- bru_obs(
formula = y ~ .,
family = "gaussian",
control.family = ctrl.lik,
data = dataf)
Define the data model: the linear predictor terms
Fitting
result <- bru(
components = linpred,
data_model)
Summary of the model parameters
result$summary.fixed
#> mean sd 0.025quant 0.5quant 0.975quant mode
#> Intercept 0.6690758 3.969868 -6.886579 0.5095548 9.213222 0.5379881
#> kld
#> Intercept 5.712418e-05
result$summary.hyperpar
#> mean sd 0.025quant 0.5quant 0.975quant mode
#> Theta1 for field 1.190358 0.4867880 0.362423 1.153755 2.255714 0.9726899
#> Theta2 for field 1.435283 0.1709765 1.103480 1.433658 1.776675 1.4267684
Note: The default prior for the intercept in inlabru has smaller variance than the default for INLA, which explains the slight difference in the results.